SAFEGUARD scored several kills during OIF.
https://www.cnas.org/publications/reports/patriot-wars
My initial contact with the Patriot system was in the late 1970s. I was fresh out of graduate school with a PhD in psychology but had some experience with predecessor air defense systems, such as Nike Hercules and Hawk, as an air defense officer in the early 1970s. Patriot was a somewhat different experience. The system has two operating modes: semi-automatic and automatic. Patriot in semi-automatic mode is slightly more automated than its immediate predecessor the Hawk system, but still on that I would term the “main line” of evolutionary development for air defense systems of its class. That is, the system provides more computer-based engagement support than its predecessors, but Patriot in semi-automatic mode is still very much an operator-in-the-loop system. Patriot in automatic mode represented a significant jump in capability. In that sense, there was a discontinuity between Patriot in semi-automatic mode and Patriot as it could be used in automatic mode.
Patriot’s automatic mode is quite different. So different, in fact, that I once asked one of the prime contractor’s systems engineers where they got the engagement-control algorithms used in the system’s automatic mode. He replied that they had been adapted from the engagement control logic of the Safeguard system. Safeguard was the first operational U.S. anti-ballistic missile (ABM) system. The system was deployed briefly beginning in the early 1970s and then traded away as part of one of the first treaties limiting U.S. and Soviet ABM systems. Remnants of the old Safeguard system still exist at Ft. Bliss, Texas, and at isolated sites in Montana and North Dakota.
Safeguard was a near-autonomous system. Get a green light to initiate the missile engagement process, and the system mostly took over from there. The computer fought the air battle. That was a reasonable choice, given Safeguard’s mission and operational context: Fight the first salvo of the Battle of Armageddon at the edge of space. However, that level of automation was not an appropriate operating mode for Patriot’s mission and operating environment. Patriot operates in the more cluttered and ambiguous lower-tier region of the air defense operational environment. The potential for track classification and identification mistakes is considerably greater for Patriot than it was for Safeguard. The Army did not fully grasp the impact of these differences, and to some extent still does not. The major problem with Patriot is that the system’s automatic feature is mostly an all-or-none operating mode. In automatic mode, there are few “decision leverage points” that allow the operators to influence the system’s engagement logic and exercise real-time supervisory control over a mostly automated engagement process.
Beginning in the late 1970s and continuing through Patriot’s initial fielding in January 1984, I was involved in a series of system development studies for Patriot. During that time, there was a school of thought in Army circles that using Patriot in automatic mode would be a preferred operating concept. Our early work lent support to the argument that automatic was not a suitable operating mode for Patriot against conventional air threats. Patriot’s engagement algorithms were too “brittle” for the system’s engagement context. Used in this context, “brittle” refers to the machine’s inability to handle unusual or ambiguous tactical situations reliably. The term is now commonly used to describe automation limitations.
The basic issue with brittleness is that computer-based algorithms operate in a black-and-white world; they have a little capacity to handle gray or ambiguous situations. That task falls to human operators, if they have the time and expertise to do so. When Patriot was initially fielded, tactical usage guidance directed that the system not be employed in automatic mode. The automatic mode was included with Patriot because it was available from Safeguard, and there were potential Cold War-related situations in which a mostly automated air defense system might prove useful. Safeguard was intended to be used in a nuclear war context in which all bets are off, so to speak, and risk tolerance is very high. That was not the case for Patriot.
...
One of the more interesting aspects of Patriot tactical operations after the first OIF fratricide incident (the British Tornado) was a decision to have fire units drop their launchers to standby mode.
That way, the system could remain in automatic engagement mode but not actually engage a track until one or more launchers were returned to ready status. Commanders apparently wanted a “second look” before permitting the system to engage.
The second OIF fratricide (the Navy F-18) took place under this modified operating regimen. The system reported a false ballistic missile track later attributable to radar electromagnetic interference. The tactical director at the battalion command and control node gave the order, “Bring your launchers to ready.”
That directive was tantamount to an order to engage. But that was not what the tactical director intended; he simply wanted to get ready to engage by bringing fire unit launchers to ready status.
The subordinate battery fire units were in tactical ballistic missile automatic mode.
The tactical director either did not know that, or he did not remember in the heat of impending action that returning launchers to ready status would result in an automatic engagement by the first available launcher. The F-18 was engaged and destroyed.
...
Army “big missile” air defense units such as Patriot function under the operational control of the Air Force. After the second fratricide, the Air Force denied Patriot units any engagement authority, even in self-defense.
The Tornado incident was a permissible self-defense engagement against what the system classified as an anti-radiation missile. Under the new rules of engagement, Patriot could engage only when specifically authorized by the Air Force controlling authority.
Tactical ballistic missile engagement timelines are often too short for that to be a practical course of action. In essence, that decision took Patriot out of the fight, so to speak.
There were no further Patriot launches during OIF, and, luckily, there were no more ballistic missiles to shoot.
Similar engagement restrictions on Patriot operations are still in place: the Air Force retains engagement authority for any Patriot shots.
...
There are situations in which a high level of automation and near-autonomous operations clearly are required. One such vsituation involves defending against large numbers of incoming ballistic missiles, what analysts refer to as a saturation attack. Human operators performing in-the-loop or too closely on-the-loop in such situations could be overwhelmed and not able to cope effectively with performance demands. Too closely on-the-loop refers to a situation in which operators under-trust the automation and do not permit the system the control latitude the engagement situation demands. This is the flip side of the automation over-trust issue mentioned previously.
In a sense, this requirement led to the development of Patriot’s automatic mode of operation more than 35 years ago. Recall that Patriot’s automatic mode was adapted from the Safeguard system’s automatic mode.
That mode of operation was entirely appropriate for Safeguard’s mission objectives and operating environment. Problems arose when the automatic mode was incorporated into Patriot without a critical consideration of differences between Patriot and Safeguard. That led to imprudent use of Patriot during OIF and contributed to the fratricide incidents.